Title: | Helper functions to check models not (yet) directly supported by DHARMa |
---|---|
Description: | Helper functions to check models not (yet) directly supported by the DHARMa package, such as Bayesian models fitted with brms, or exponential random graph models (ERGMs). |
Authors: | Francisco Rodríguez-Sánchez [aut, cre] |
Maintainer: | Francisco Rodríguez-Sánchez <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.0.2 |
Built: | 2025-01-12 05:22:33 UTC |
Source: | https://github.com/Pakillo/DHARMa.helpers |
Check Bayesian models fitted with brms
dh_check_brms( model, resp = NULL, integer = FALSE, plot = TRUE, nsamples = 1000, ntrys = 5, ... )
dh_check_brms( model, resp = NULL, integer = FALSE, plot = TRUE, nsamples = 1000, ntrys = 5, ... )
model |
A fitted model |
resp |
Optional name of response variable (for multivariate models). |
integer |
Logical (TRUE/FALSE), indicating if response is an integer, as in Poisson and binomial models |
plot |
Logical. Plot residual checks? Default is TRUE. |
nsamples |
Integer. Number of samples to draw from the posterior. |
ntrys |
Integer. Number of trys to use for truncated distributions. See |
... |
Further arguments for |
An object of type DHARMa
. See DHARMa::createDHARMa()
for more details.
https://frodriguezsanchez.net/post/using-dharma-to-check-bayesian-models-fitted-with-brms/
#' # Example models taken from brms::brm() # Poisson regression for the number of seizures in epileptic patients fit1 <- brm(count ~ zAge + zBase * Trt + (1|patient), data = epilepsy, family = poisson()) simres <- dh_check_brms(fit1, integer = TRUE) plot(simres, form = epilepsy$zAge) testDispersion(simres) # Probit regression using the binomial family ntrials <- sample(1:10, 100, TRUE) success <- rbinom(100, size = ntrials, prob = 0.4) x <- rnorm(100) data4 <- data.frame(ntrials, success, x) fit4 <- brm(success | trials(ntrials) ~ x, data = data4, family = binomial("probit")) summary(fit4) simres <- dh_check_brms(fit4, integer = TRUE) plot(simres, form = data4$x) # Multivariate (multiresponse) model data("BTdata", package = "MCMCglmm") bf_tarsus <- bf(tarsus ~ sex + (1|p|fosternest) + (1|q|dam)) bf_back <- bf(back ~ hatchdate + (1|p|fosternest) + (1|q|dam)) fit <- brm(bf_tarsus + bf_back + set_rescor(TRUE), data = BTdata, chains = 2, cores = 2) dh_check_brms(fit, resp = "tarsus") brms::pp_check(fit, resp = "tarsus") dh_check_brms(fit, resp = "back") brms::pp_check(fit, resp = "back")
#' # Example models taken from brms::brm() # Poisson regression for the number of seizures in epileptic patients fit1 <- brm(count ~ zAge + zBase * Trt + (1|patient), data = epilepsy, family = poisson()) simres <- dh_check_brms(fit1, integer = TRUE) plot(simres, form = epilepsy$zAge) testDispersion(simres) # Probit regression using the binomial family ntrials <- sample(1:10, 100, TRUE) success <- rbinom(100, size = ntrials, prob = 0.4) x <- rnorm(100) data4 <- data.frame(ntrials, success, x) fit4 <- brm(success | trials(ntrials) ~ x, data = data4, family = binomial("probit")) summary(fit4) simres <- dh_check_brms(fit4, integer = TRUE) plot(simres, form = data4$x) # Multivariate (multiresponse) model data("BTdata", package = "MCMCglmm") bf_tarsus <- bf(tarsus ~ sex + (1|p|fosternest) + (1|q|dam)) bf_back <- bf(back ~ hatchdate + (1|p|fosternest) + (1|q|dam)) fit <- brm(bf_tarsus + bf_back + set_rescor(TRUE), data = BTdata, chains = 2, cores = 2) dh_check_brms(fit, resp = "tarsus") brms::pp_check(fit, resp = "tarsus") dh_check_brms(fit, resp = "back") brms::pp_check(fit, resp = "back")